Journal of NeuroVirology, 13: 2-10, 2007
© 2007 Journal of NeuroVirology

ISSN: 1355-0284 print / 1538-2443 online
DOI: 10.1080/13550280701258084

Review

informa

healthcare

Glial activation and matrix metalloproteinase
release in cerebral malaria

A Szklarczyk,! M Stins,? EA Milward,* H Ryu,! C Fitzsimmons,* D Sullivan,® and K Conant *

Departments of ! Neurology, ?Pediatrics and *Molecular Microbiology and Immunology, Johns Hopkins University,
Baltimore, Maryland, USA; 4 The University of Newcastle, Callaghan, NSW Australia

Although neurological symptoms associated with cerebral malaria (CM) are
largely reversible, recent studies suggest that lasting neurological sequelae can
occur. This may be especially true for children, in whom persistent deficits in-
clude problems with memory and attention. Because the malaria parasite is
not thought to enter the brain parenchyma, lasting deficits are likely related
to factors including the host response to disease. Studies with a rodent model,
and with human postmortem tissue, suggest that glial activation occurs with
CM. In this review, the authors will highlight studies focused on such acti-
vation in CM. Likely causes will be discussed, which include ischemia and
activation of blood brain barrier endothelial cells. The potential consequences
of glial activation will also be discussed, highlighting the possibility that glial-
derived proteinases contribute to structural damage of the central nervous sys-
tem (CNS). Of note, for the purposes of this focused review, glial activation will
refer to the activation of astrocytes and microglial cells; discussion of oligo-
dendroglial cells will not be included. In addition, although events thought
to be critical to the pathogenesis of CM and glial activation will be covered,
a comprehensive review of cerebral malaria will not be presented. Excellent
reviews are already available, including Coltel et al (2004; Curr Neurovasc
Res 1: 91-110), Medana and Turner (2006; Int J Parasitol 36: 555-568), and
Hunt et al (2006; Int J Parasitol 36: 569-582). Journal of NeuroVirology (2007)

13, 2-10.

Background—cerebral malaria (CM) is a major
cause of morbidity and mortality

The 2005 World Malaria Report released by the World
Health Organization (WHQ) and the United Nations
Children’s Fund (UNICEF) indicates that there are
an estimated 350 to 500 million malaria cases, of
which 270 to 400 million are falciparum malaria (the
strain associated with CM). According to this report,
about 70% of the burden of falciparum malaria is es-
timated to be in Africa and about 20% in Southeast
Asia. Malarial pathogens are not, however, limited
to Africa and Southeast Asia. Endemic areas include
India, the Caribbean, and Central and South America.
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As a single infectious disease, malaria is close to
tuberculosis and acquired immunodeficiency syn-
drome (AIDS) in terms of the number of lives it claims
(Lou et al, 2001). Cerebral malaria (CM) is among the
most severe complications of infection, and a ma-
jor cause of death (Lou et al, 2001). In some series,
CM accounts for up to 80% of malaria fatalities (Lou
et al, 2001). Though malaria can strike people at var-
ied ages, it is predominantly children, and those with
poor access to health care, who die (Lou et al, 2001).

Neurological symptoms in CM include impaired
consciousness, coma, delirium, seizures, and in-
tracranial hypertension (MacPherson et al, 1985).
Strict research definitions of CM include coma last-
ing for more than 30 min, confirmed Plasmodium fal-
ciparum infection, and exclusion of other causes of
encephalopathy. Neuroimaging studies may show
diffuse cerebral edema, as well as thalamic and
cerebellar white matter hypoattenuation. Such stud-
ies may, however, underestimate pathology. For



example, diffuse petechial hemorrhages seen at au-
topsy may be missed by computerized tomography
(Patankar et al, 2002).

Although nonfatal CM may be associated with
what appears to be a dramatic recovery in that
those who do not die may wake from coma, it is
becoming increasingly recognized that the disease
may cause serious long-term neurological disability
(MacPherson et al, 1985). CM often results in per-
manent neurological sequelae, including seizures.
In addition, children who survive CM may be left
with acquired language disorders, motor deficits,
and problems with memory and attention (Carter
et al, 2006; Idro et al, 2006). A recent review suggests
that P. falciparum may affect the brain globally
rather than in a localized fashion (Kihara et al,
2006).

Sequestration of Plasmodium
falciparum-infected red blood cells

(Pf-IRBCs) in postcapillary brain

endothelium is a hallmark of CM pathogenesis

Central to CM pathogenesis is the sequestration of P.
falciparum-infected red blood cells, containing ma-
ture forms of the parasite, within brain microvessels.
Studies show there is a strong correlation between
adhesiveness of Plasmodium-infected red blood cells
(RBCs) to endothelium and the risk of CM develop-
ment (Urban and Roberts, 2002).

Histopathologic studies of CM have shown that the
tightly packed and adherent P. falciparum-infected
red blood cells (Pf-IRBCs) associate with the blood-
brain barrier (BBB) endothelium via Pf-IRBC surface
knob-like protrusions (Pongponratn et al, 1985). The
knobs of 200 kDa, or larger, contain parasite-derived
variant surface antigens that comprise a family of
erythrocyte membrane proteins (PfEMP1), which can
act as ligands for Pf-IRBC attachment to host cells
(Baruch et al, 1995).

The attachment of Pf-IRBCs to endothelium is me-
diated by specific host-encoded receptor molecules
such as intercellular adhesion molecule (ICAM)-1,
which may be especially important in the brain. Pe-
ripheral parasites isolated from CM patients bind
to ICAM-1, and postmortem brain samples of CM
patients indicate that IRBC sequestration corre-
lates with increased endothelial ICAM-1 expression
(Newbold et al, 1997; Porta et al, 1993; Silamut et al,
1999; Turner et al, 1994). Other adhesion molecules
may also play arole, including the «,f; integrin, vas-
cular cell adhesion molecule (VCAM)-1, and throm-
bospondin, which colocalize with sequestered Pf-
IRBCs in postmortem brain samples of CM patients
(Newbold et al, 1997; Porta et al, 1993; Turner et al,
1994). Chondroitin sulfate A and CD36 can also inter-
act with Pf-IRBCs (Ockenhouse et al, 1991; Sherman
et al, 2003).
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Adhesive interactions may cause glial
activation by varied mechanisms including
hypoxia, endothelial cell activation, and
changes in blood-brain barrier permeability

Adhesion of malarial infected RBCs to endothelia
may be associated with vascular occlusion and local-
ized hypoxia (Hunt et al, 2006). Hypoxia is damaging
to cells and can stimulate aberrant protein expres-
sion. Hypoxia has been linked to increased stability
of the transcription factor subunit hypoxia-inducible
factor-1e (HIF-1«) (Ke and Costa, 2006). Hypoxia-
inducible transcription factors may up-regulate the
expression of proteins involved in angiogenesis,
which include the urokinase plasminogen activator
receptor and the matrix metalloproteinases (Dachs
and Tozer, 2000; Graham et al, 1998). These pro-
teins are important in a range of activation-related
responses, as detailed below.

Adhesion of IRBCs to BBB endothelium can also
lead to further endothelial cell activation, with a con-
sequent increase in their release of soluble molecules
such as cytokines and prostaglandins that can in
turn activate cells of the brain parenchyma. Ma-
trix metalloproteinase (MMP) release by endothelial
cells may also be stimulated by adhesive interactions
and may contribute to changes in BBB permeabil-
ity. Moreover, altered BBB permeability, with ingress
of plasma components, may contribute in some part
to microglial activation (Medana et al, 2000). In ad-
dition, changes in BBB integrity may allow prod-
ucts of malarial infected RBCs, such as hemozoin,
to come into contact with cells of the BBB and brain
parenchyma. This is significant in that products such
as haemozoin can activate select cells and increase
their release of MMPs via interactions with toll like
receptors (Coban et al, 2005).

Hypoxia and endothelial cell activation are not,
however, the only mechanisms by which glial acti-
vation may occur. Elegant studies have shown that
increases in levels of circulating cytokines can acti-
vate parenchymal cells, especially in areas without a
fully formed BBB (Thibeault et al, 2001). This sort of
mechanism may be important in CM cases associated
with activation of leukocytes and changes in levels of
circulating cytokines.

One group that has examined the potential
mechanisms underlying glial activation in CM has
investigated the potential contribution of changes
in BBB permeability, as well as that of the immune
response to the malaria parasite (Medana et al, 2000).
This group relied on a murine model of malaria,
experimental cerebral malaria. Murine and human
CM share critical features in terms of behavior,
histopathology, and immunological manifestations
(Hunt et al, 2006). Although there may be differ-
ences in terms of the predominant cell type that
is sequestered in brain microvasculature, with the
murine model having relatively higher leukocyte
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sequestration and the human having relatively
higher IRBC sequestration, significant leukocyte
sequestration is seen in pediatric patients and both
human and murine malaria share disease sequelae
such as central nervous system (CNS) inflammation
(Hearn et al, 2000).

In one set of experiments, Medana et al showed
that BBB function was compromised in noninfected
animals that received an intracarotid injection of ara-
binose. Such compromise was followed by an in-
crease in BBB permeability, thickening of microglial
processes, and redistribution of microglia to the vas-
culature, but not with other changes in microglial
morphology that are typically seen in the murine
model of disease. In contrast, dexamethasone treat-
ment of infected mice, initiated 4 days post inocula-
tion and not affecting parasite growth, could prevent
cerebral complications and morphological changes
in microglia (Medana et al, 2000). The authors con-
cluded that a dexamethasone sensitive event(s), pos-
sibly associated with the immune response and oc-
curring within the first few days of malaria infection,
could prevent development of reactive microglia and
cerebral complications.

Evidence for activation of glial cells in CM

Early disease histopathology findings in CM involve
cerebral venules packed with parasitized erythro-
cytes, as well as microhemorrhages and ischemic
foci. Later, lesions known as Durck’s granulomas
may become apparent. Durck’s granulomas are char-
acterized by aggregates of reactive astrocytes and
microglial cells in the vicinity of cerebral capil-
laries (Turner, 1997). Reactive astrocytes proximal
to Durck’s granulomas show cell surface expres-
sion of urokinase plasminogen activator receptor
whereas quiescent astrocytes do not (Fauser et al,
2000). Microglial cell expression of macrophage-
related proteins (MRP), a correlate of activation,

GFAP

control

is also observed as is increased expression of
cyclooxygenase-1 (Bruck et al, 1995; Deininger et al,
2002). In addition, nitric oxide synthase (NOS)-2 ex-
pression in astrocytes, microglia, and macrophages is
increased (Deininger et al, 2002).

Of interest, endothelial cell activation has been
noted in a study of brains from Ghanaian chil-
dren who died with conditions including CM, se-
vere malarial anemia (SMA), or non—central nervous
system infection (NCNSI). Sequestered leukocytes
were present in most of the sections from the CM
cases but none of the sections from the SMA cases.
Elevated vascular expression of ICAM-1, VCAM-1,
and E-selectin was noted and showed significant
co-localization with areas of erythrocyte sequestra-
tion (Armah et al, 2005). In this study, CM cases
also showed increased staining for interleukin (IL)-
18 and tumor necrosis factor (TNF)-a in the brain
parenchyma, especially in cerebellar sections.

The murine model also supports the idea that glial
activation occurs with CM. For example, in one re-
cent study, significant inflammation was observed
with an increase in F4/80+ microglia/macrophages
and glial fibrillary acidic protein positive astrocytes
(Wiese et al, 2006). Increased immunoreactivity for
8-oxoguanine (marker of oxidative stress) was also
noted. In another murine study, activated caspase 3-
positive apoptotic astrocytes were noted (Potter et al,
2006). Of note, although there may be differences in
terms of the predominant cell type that is sequestered
in brain microvasculature, with the murine model
having relatively higher leukocyte sequestration and
the human having substantial IRBC sequestration, it
is becoming increasingly apparent that murine and
human CM share critical features in terms of behav-
ior, histopathology, and immunological manifesta-
tions (Hunt et al, 2006).

Shown in Figure 1 are results demonstrating in-
creased immunostaining for glial fibrillary acidic pro-
tein in P. berghei ANKA-infected, as compared to un-
infected, mice.

Figure1 Glial activation in the murine model of CM, experimental cerebral malaria (ECM). Shown are results from immunohistochemical
analysis of control and ECM brain tissue. These studies relied on C57B1/6 mice, which, as compared to other strains of mice, consistently
develop ECM (Hunt et al, 2006). Mice were given a saline injection or infected with P. berghei ANKA. Animals were euthanized 9
days later and brains harvested for preparation of fresh frozen sections. Inmunohistochemistry of the cerebral cortex (layers 1 to 6) was
subsequently performed as described (Szklarczyk et al, using a commercial antibody to glial fibrillary acidic protein (Zymed).



The products of activated glial cells may
contribute to neurological sequelae—focus on
matrix metalloproteinases

As alluded to above, both hypoxia and the products
of activated endothelial cells can lead to activation of
brain parenchymal cells. Among the soluble factors
released by activated glia are potential neurotoxins
such as platelet-activating factor, nitric oxide, proin-
flammatory cytokines, and quinolinic acid. Activated
glia also release matrix metalloproteinases (MMPs).
We (see data to follow) and others have noted that
MMPs may be elevated with CM (Brown et al, 2000).
This may be significant in that, as will be discussed in
the section to follow, MMPs can target matrix proteins
that support BBB integrity and neuronal survival.

The matrix metalloproteinases (MMPs) are zinc-
dependent endopeptidases that can cleave extra-
cellular matrix (ECM) proteins as well as secreted
cytokines and cell surface receptors (Blobel, 2000;
Lochter et al, 1998; McCawley and Matrisian, 2001;
Sternlicht and Werb, 2001; Yong et al, 1998). Mem-
bers of the MMP family are differentially expressed
by all major resident cells of the brain, including neu-
rons, astrocytes, and microglia. For example, MMP-
9 is localized to both neurons and glia in mature
brain, whereas MMP-2 is expressed almost exclu-
sively by astrocytes. A particularly important source
of MMPs in the context of neuroinflammation is the
macrophage, a cell type known to transverse the
blood-brain barrier.

When produced in a physiological manner dur-
ing development or repair, the expression of select
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MMPs may benefit the host. For example, MMPs
may increase the bioavailability of neurotrophic fac-
tors including brain-derived nerve factor (BDNF) and
insulin-like growth factor (IGF)-1 (Fowlkes et al,
2004; Lee et al, 2001), and they may play a role
in postinjury synaptogenesis (Reeves et al, 2003;
Szklarczyk et al, 2002).

In the setting of disease with excess proteinase
release, however, MMPs may have overall effects
that are deleterious to the host. Several studies have
shown that MMPs can be neurotoxic, and a variety
of mechanisms have been implicated (Gu et al, 2002;
Vos et al, 2000; Zhang et al, 2003). MMPs cleave
integrin-binding matrix proteins and may thus
stimulate cell death through detachment. MMPs also
bind to integrins and may thereby stimulate changes
in intracellular signaling cascades (Alimenti et al,
2004; Chung et al, 2004; Conant et al, 2004; Hong
et al, 2003; Zigrino et al, 2002). In addition, MMP-2
can cleave the chemokine stromal-derived factor-1«
to generate a neurotoxic protein fragment (Zhang
et al, 2003). Moreover, at least one MMP can activate
proteinase-activated receptor-1 (Boire et al, 2005).
Activation of this receptor by thrombin has been
linked to the death of motor neurons (Turgeon et al,
1998).

MMPs may also influence synaptic structure or
function (Table 1). MMPs can cleave adhesion
molecules that may stabilize the synapse, includ-
ing syndecans, cadherins, and signal regulatory pro-
tein (SIRP)-1« (Brule et al, 2006; Monea et al, 2006;
Ohnishi et al, 2004). Consistent with this possi-
bility, an membrane-type (MT)-MMP has recently

Table 1 Select brain parenchymal proteins that are critical to CNS function and are candidate substrates for MMPs or MT-MMPs

(membrane-type MMPs)

Protease Substrate CNS localization Function of the substrate Reference
MMP-7 Connexin 43 Astrocytes Component of astrocytic (Lindsey et al, 2006)
gap junctions
MMP-7 VE-cadherin Endothelium Adhesion and signaling (Ichikawa et al, 2006)
MMP-7 E-cadherin Endothelium Adhesion and signaling (Davies et al, 2001)
MMP-3 neurons, synapses, (Noe et al, 2001)
astrocytes
MT1-MMP (Covington et al, 2006)
MT5-MMP (Monea et al, 2006)
MMP-9 70-1 Endothelium neurons Epithelial barrier (Asahi et al, 2001)
permeability
Component of the
electrical synapse
MMP-7 Fas ligand Neurons Cell death and signaling (Ethell et al, 2002)
(Vargo-Gogola et al, 2002)
MMP-7 IGF-BP Neurons Bioavailability of the (Hemers et al, 2005)
MMP-3 trophic factor IGF (Nakamura et al, 2005)
MMP-9 (Coppock et al, 2004)
MMP-7 Osteopontin Astrocytes microglia Neuronal survival (Agnihotri et al, 2001)
mediator
MMP-3
MMP-7 Integrin Neurons, astrocytes Adhesion and signaling (Ratnikov et al, 2002)
MT1-MMP (von Bredow et al, 1997)
MMP-3 Extracellular e-synuclein Neurons, astrocytes Unknown (Sung et al, 2005)
MMP-3 Agrin Synapses Receptor clustering (Sole et al, 2004) (VanSaun
and Werle, 2000)
Putative MMP SHPS Synapses Adhesion and signaling (Ohnishi et al, 2004)

Plasmin MMP-7 Pro-BDNF, pro-NGF

Periglial, perineuronal

Neuronal survival (Lee et al, 2001)
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been shown to process synaptic cadherin (Monea
et al, 2006). In addition, MMP-7 has been shown
to influence the morphology of dendritic spines
(Bilousova et al, 2006), and MMP-9 has been linked to
altered long-term potentiation (Meighan et al, 2006;
Nagy et al, 2006). This effect may involve MMP-9-
mediated generation of a matrix fragment that influ-
ences the phosphorylation of select NMDA receptor
(NMDAR) subunits (Nagy et al, 2006).

Evidence that MMP levels are increased
with CM

Analysis of postmortem CM brains reveals that
MMP-dependent proteolysis may be enhanced
in the brain vasculature. For example, it has
been shown that MMP-1 protein accumulates in
macrophages/microglial cells in Durck’s granulomas
(Deininger et al, 2003). Similarly, Durck’s granulo-
mas are immunopositive for endostatin, which may
be generated by MMPs. Granulomas are also positive
for urokinase plasminogen activator receptor (uPAR),
which can activate MMPs (Deininger et al, 2002,
2003). Of interest, animal studies have shown that
urokinase- and urokinase receptor-deficient mice
have delayed mortality and attenuated thrombocy-
topenia associated with severe malaria (Piguet et al,
2000).

control

MMP7 %

control

Human studies have also shown that circulating
levels of MMP-9 may be increased with CM (Brown
et al, 2000), although increases in cerebrospinal fluid
(CSF) levels in particular were not apparent, possibly
because of the enzyme’s tight association with the
extracellular matrix. Although no studies of MMPs
in human postmortem brain tissue have so far been
reported, it has been shown that MMP-2 and MMP-
9 levels are heavily up-regulated in C57BL/6 mice
brain infected with P. berghei ANKA (Van den Steen
et al, 2006). Elevated MMP-9 levels were selective for
the CNS, where they were found in association with
the vasculature and parenchyma. Elevated levels of
MMP-9 were not observed in other organs. CM as-
sociated survival in MMP-9-null mice did not differ,
however, from that in the control group, suggesting
that the enzyme does not significantly contribute to
lethality. Nonetheless, the application of a synthetic
broad-spectrum inhibitor of MMPs did result in en-
hanced survival of animals. Gene expression of other
MMPs including MMP-3 was enhanced at the mes-
sage level in infected brains. It is therefore possible
that an increase in the activity of a variety of MMPs
is required for lethality, or that an MMP other than
MMP-9 may contribute in a significant manner (Van
den Steen et al, 2006).

As shown in Figure 2, we observe increased levels
of MMP-7 in brain tissues from P. berghei-infected
mice. Increased release of this proteinase proximal to

infécted
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Figure 2 MMP-7 protein expression in cerebral neocortex of control and P. bergheri ANKA infected mice. Upper panel: High-
magnification image of cerebral neocortex demonstrating immunofluorescent detection of MMP-7 protein. Note that in noninfected
animals (control), MMP-7 protein localizes to cortical neurons. In the infected animal (day 9 post infection), MMP-7 was up-regulated
(right). The scale bar is 20 pm. Lower panel: Detection of MMP-7 protein in cortical extracts from control and infected mice. MMP-7
protein was first immunoprecipitated from cortical extracts by means of a selective antibody (Calbiochem IM71), and immunoprecipitates
were then analyzed by Western blot. Lanes show replicate results from three control, two day 6, and two day 9 animals.



the neuronal synapse may in turn influence synaptic
structure and function.

Potential MMP targets that are altered in CM

Consistent with potential roles in disease pathogene-
sis, evidence from in vitro and animal studies shows
that MMPs can target CNS structures and substrates
that are damaged in CM, including BBB and myelin
components. As previously mentioned, MMPs are
well known to target proteins of the BBB basement
membrane (Yong et al, 1998). Moreover, MMP-9 and
-12 can degrade myelin basic protein (Chandler et al,
1996; Proost et al, 1993).

Evidence for BBB damage in CM is supported
by both human and animal studies. For example,
disruption of endothelial cell tight junctions and
reduced staining for the junctional protein zonae
occludens-1 has been observed in Malawian children
and Vietnamese adults (Brown et al, 1999, 2001).
In addition, loss of BBB basement membrane frag-
ments has been observed in the murine model (Polder
et al, 1992). MMPs released by activated endothe-
lium or glial endfeet may be uniquely positioned
to act on the BBB. Sequestered leukocytes are an-
other likely source of BBB-degrading MMPs, espe-
cially if activated by events such as adhesion to in-
fected erythrocytes.

Evidence for damage to myelin in CM also comes
from both human and animal studies (Ma et al,
1997; Medana et al, 2002). Axonal damage, an-
other potential consequence of MMP activity, has
also been described in CM (Medana et al, 2002).
MMPs can also act on soluble molecules that have
been linked to CM. For example, endostatin and
proinflammatory cytokines including TNF-o and
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